Linear Mappings

- Linear mappings
- Eigenvalues and Eigenvectors.

Linear Mappings

- Linear mappings are functions defined on vector spaces that preserve linear combinations.

Definition T: mapping, transformation.

Given two vector spaces V and W, we say that $T: V \rightarrow W$ is a linear mapping if it verifies: $\forall \bar{u}, \bar{v} \in V$ and $\forall \alpha \in \mathbb{R}$
(a) $T(\bar{u}+\bar{v})=T(\bar{u})+T(\bar{v}) \quad \bar{u}+\bar{v} \in V$
(b) $T(\alpha \bar{u})=\alpha T(\bar{u}) . \quad T(\bar{u}), T(\bar{v}) \in W$

Example. The mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T\left[\binom{x}{y}\right]=\binom{y}{x}$ is linear.

$$
\begin{aligned}
& \bar{u}=\binom{u_{1}}{u_{2}}, \bar{v}=\binom{v_{1}}{v_{2}} / T(\bar{u})=\binom{u_{2}}{u_{1}}, T(\bar{v})=\binom{v_{2}}{v_{1}} \\
& T(\alpha \bar{u}+\beta \bar{v})=\alpha T(\bar{u})+\beta T(\bar{v}) \\
& T(\alpha \bar{u}+\beta \bar{v})=T\left[\binom{\alpha u_{1}+\beta v_{1}}{\alpha u_{2}+\beta v_{2}}\right]=\binom{\alpha u_{2}+\beta v_{2}}{\alpha u_{1}+\beta v_{1}} \\
& =\alpha\binom{u_{2}}{u_{1}}+\beta\binom{v_{2}}{v_{2}}=\alpha T(\bar{u})+\beta T(\bar{v})
\end{aligned}
$$

Example. The mapping $D: \mathbb{P} \rightarrow \mathbb{\mathbb { P }}$ defined by $D p(x)=p^{\prime}(x)$ is linear.
$p, q \in \mathbb{P}, \quad \alpha, \beta \in \mathbb{R}$

$$
\begin{aligned}
D[\alpha p+\beta q]=(\alpha p+\beta q)^{\prime} & \stackrel{\downarrow}{=} \alpha p^{\prime}+\beta q^{\prime} \\
& =\alpha D p+\beta D q
\end{aligned}
$$

Example. Let A be a matrix of size $m \times n$. The mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $T(\bar{x})=A \bar{x}$ is linear.

$$
\begin{gathered}
\left.\begin{array}{c}
A(\bar{x}+\bar{y})=A \bar{x}+A \bar{y} \\
A(\alpha \bar{x})=\alpha A \bar{x}
\end{array}\right\} \begin{array}{l}
A(\alpha \bar{x}+\beta \bar{y}) \\
=\alpha A \bar{x}+\beta A \bar{y}
\end{array} \\
\underbrace{T\left[\binom{x}{y}\right]=\binom{y}{x}}_{T(\bar{x})=A \bar{x}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}
\end{gathered}
$$

- Using the definition
- Showing that it can be written as $A \bar{x}$

Example. The mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f\left[\binom{x}{y}\right]=\binom{y}{x^{2}}$ is not linear.

- We can show that it does not preserve scalar multiplication.

$$
\begin{aligned}
& \cdot f\left[5\binom{2}{1}\right]=f\left[\binom{10}{5}\right]=\binom{5}{100}=5\binom{1}{20} \\
& \quad f f\left[\binom{2}{1}\right]=5\binom{1}{4} \\
& f\left[5\binom{2}{1}\right] \neq 5 f\left[\binom{2}{1}\right]
\end{aligned}
$$

T p.l.c. $\Leftrightarrow T$ is linear.

1. $\bar{\delta} \in V$
2. $T\left(\bar{\sigma}_{v}\right)=\bar{o}_{w}$
3. Vc.a
4. T pea
3.V c.s.m
5. T p.s.m

Properties of linear mappings
Let $T: V \rightarrow W$ be a linear mapping, then:

1. $T\left(\bar{o}_{v}\right)=\bar{o}_{w}$
2. $T(-\bar{u})=-T(\bar{u})$

$$
-\bar{u}=-1 \cdot \bar{u}
$$

3. $T\left(a_{1} \bar{u}_{1}+a_{2} \bar{u}_{2}+\cdots+a_{n} \bar{u}_{n}\right)=a_{1} T\left(\bar{u}_{1}\right)+\cdots+a_{n} T\left(\bar{u}_{n}\right)$

$$
T(\alpha \bar{\alpha}+\beta \bar{v})
$$

Example. The mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f\left[\binom{x}{y}\right]=\binom{x+1}{y}$ is not linear since $f\left[\binom{0}{0}\right]=\binom{1}{0} \neq\binom{ 0}{0}$.

$$
f\left[\binom{x}{y}\right]=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}+\binom{1}{0}
$$

Kernel and Image of a linear mapping
Definition
Let $T: V \rightarrow W$ be a linear mapping. We define the kernel and image of T, respectively, as follows:

$$
\begin{aligned}
\operatorname{Ker} T & =\{\bar{x} \in V, T(\bar{x})=\overline{0}\} \subseteq V \\
\operatorname{lm} T & =\{T(\bar{x}) \in W, \bar{x} \in V\} . \subseteq W \\
& =\{\bar{y} \in W, \quad \bar{y}=T(\bar{x}) \text { for some } \bar{x} \in V\}
\end{aligned}
$$

$\operatorname{Ker} T$ is a subspace of V $\ln T$ is a subspace of W.

Kent is a subspace:
$\bar{x}, \bar{y} \in \operatorname{Ker} T$

$$
\begin{aligned}
& T \sim \alpha \bar{x}+\beta \bar{y} \in \operatorname{kerT} \\
& \begin{aligned}
-T(\bar{y})=\overline{\bar{b}} \rightarrow T(\alpha \bar{x}+\beta \bar{y}) & =\alpha T(\bar{x})+\beta T(\bar{y}) \\
& =\alpha(\bar{y})=\overline{0}+\beta \overline{0}=\overline{0}
\end{aligned}
\end{aligned}
$$

$\ln T$ is a subspace.
def of $\bar{u}_{1} \bar{v} \in \ln T \quad \alpha$ is linear $\alpha \bar{u}+\beta \bar{v} \in \ln T$ $\bar{x}, \left.\bar{y} \in V \quad \begin{aligned} & \bar{u}=T(\bar{x}) \\ & \bar{v}=T(\bar{y})\end{aligned} \right\rvert\, \quad \exists \bar{z} \in V, \alpha \bar{u}+\beta \bar{v}=T(\underline{\bar{z}}), ~$

$$
\alpha \bar{u}+\beta \bar{v}=\alpha T(\bar{x})+\beta T(\bar{y})
$$

$$
=T(\underbrace{\alpha \bar{x}+\beta \bar{y}}_{\bar{z}})^{0}
$$

T is surjective $\Rightarrow \ln T=W$

Theorem
Let $T: V \rightarrow W$ be a linear mapping and let $\left\{\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{n}\right\}$ be a system of generators of V. Then $\left\{T\left(\bar{u}_{1}\right), T\left(\bar{u}_{2}\right), \ldots, T\left(u_{n}\right)\right\}$ is a system of generators of $\ln T$.

$$
V=\operatorname{Span}\left\{\bar{u}_{1} \bar{u}_{2}, \ldots, \bar{u}_{n}\right\} \longrightarrow \operatorname{Im} T=\operatorname{Span}\left\{T\left(\bar{u}_{1}\right), T\left(\bar{u}_{2}\right), \ldots, T\left(\tilde{\omega}_{\omega}\right)\right\}
$$

Example. Find the kernel and image of the linear mapping $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
\begin{aligned}
& f\left[\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right]=\left(\begin{array}{c}
x+z \\
y \\
x+2 y+z
\end{array}\right) \begin{array}{l}
\begin{array}{l}
T(x)=A x \\
\rightarrow \operatorname{ker} f=N_{u l} A \\
\lim f=\operatorname{Col} A \\
T: V \rightarrow W
\end{array}
\end{array} \\
& f\left[\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right]=\underbrace{\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 2 & 1
\end{array}\right)}_{A}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A \sim\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \begin{array}{c}
x+z=0 \\
y=0 \\
z=\lambda
\end{array} \\
& \operatorname{Nul} A=\operatorname{ker} f=\operatorname{Span}\left\{\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)\right\} \\
& \operatorname{ColA}=\operatorname{lm} f=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
\operatorname{Span}\left\{f\left(u_{1}\right), f\left(u_{2}\right), f\left(u_{3}\right)\right\} \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right\} \\
& =\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)\right\}
\end{aligned}
$$

If we apply the previous theorem

$$
\bar{u}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \bar{u}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \bar{u}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

$$
\begin{aligned}
& f\left[\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right]=\left(\begin{array}{c}
x+z \\
y \\
x+2 y+z
\end{array}\right) \\
& f\left(\bar{u}_{1}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \quad f\left(\bar{u}_{2}\right)=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) \quad f\left(\bar{u}_{3}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \\
& \operatorname{lm} T=\{T(\bar{x}): \bar{x} \in V\} \stackrel{\downarrow}{=}\{A \bar{x}: \bar{x} \in V\} \\
& =\left\{x_{1} \bar{a}_{1}+x_{2} \bar{a}_{2}+\cdots+x_{n} \bar{a}_{n}: \bar{x}=\left[\begin{array}{l}
x_{1}^{x_{1}} \\
\frac{1}{2} \\
x_{1}
\end{array}\right) \in V\right. \\
& =\operatorname{Col} A \\
& \operatorname{Ker} T=\{\bar{x} \in V: T(\bar{x})=\overline{0}\} \stackrel{T(\bar{x})=A \bar{x}}{\rightleftharpoons}\{\bar{x} \in V: A \bar{x}=\overline{0}\} \\
& =\text { Nul A. }
\end{aligned}
$$

Injective, surjective, and bijective mapping
A function $f: A \rightarrow B$ is injective if and only if
$\forall x, y \in A$, if $x \neq y$ then $f(x) \neq f(y)$, or equivalently
$\forall x, y \in A$, if $f(x)=f(y)$ then $x=y$. f is infective if $f(x)=y$ has at most 1 sol. $\forall g$

A function $f: A \rightarrow B$ is surjective if and only if
$\forall b \in B$, there exists $a \in A$ such that $b=f(a)$.
f is sorjective of $f(\bar{x})=\bar{y}$ has at least 1 sol. $\forall \bar{y}$

- A function is bijective if and only if it is both injective and surjective. f is bijective iff $f(x)$ ag always has a unique solution.

Example.

$$
\begin{aligned}
& \bar{b}_{1}=T(\bar{x}) \rightarrow \bar{x}=\bar{x}_{2} \\
& \bar{b}_{2}=T(\bar{x}) \rightarrow \bar{x}=\bar{x}_{1} \\
& \bar{b}_{5}=T(\bar{x}) \rightarrow \bar{x}=\bar{x}_{3}
\end{aligned}
$$

Cnjective.
Not surjective

Example.

Example.

Example.

Theorem
Let $T: V \rightarrow W$ be a linear mapping. Then: 1. T is injective if and only if $\operatorname{ker} T=\{\overline{0}\}$.
2. Tis surjective if and only if $\operatorname{lm} T=W$.

Other characterizations
For any given linear mapping $f: V \rightarrow W$, we have:

1. f is injective if and only if for each linearly independent set $\left\{\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{n}\right\}$, the set $\left\{f\left(\bar{u}_{1}\right), f\left(\bar{u}_{2}\right), \ldots, f\left(\bar{u}_{n}\right)\right\}$ is linearly independent.
f is injective $\Longleftrightarrow f$ preserves lin. independence.
\Rightarrow Suppore that f is injective.
NTS: if $\left\{\bar{u}_{1}, \ldots, \bar{u}_{n}\right\}$ is lin. ind.
then $\left\{f\left(\bar{u}_{1}\right), \ldots, f\left(\bar{u}_{n}\right)\right\}$ lin. ind.

$$
\begin{aligned}
& c_{1} f\left(\bar{u}_{1}\right)+c_{2} f\left(\bar{u}_{2}\right)+\cdots+c_{n} f\left(\bar{u}_{n}\right)=\bar{o}_{w} \\
& f(\underbrace{c_{1} \bar{u}_{1}+c_{2} \bar{u}_{2}+\ldots+c_{n} \bar{u}_{n}}_{\bar{o}_{v}})=\bar{o}_{w} \\
& \text { fis injective } \Rightarrow c_{1} \bar{u}_{1}+c_{2} \bar{u}_{2}+\cdots+c_{n} \bar{u}_{n}=\bar{o}_{v} \\
& \left\{\bar{u}_{1}, \ldots, \bar{u}_{n}\right\} \text { is linind } \Rightarrow c_{1}=c_{2}=c_{3}=\cdots-c_{n}=0
\end{aligned}
$$

\Leftarrow Suppoself $\left\{f\left(\bar{u}_{1}\right), \ldots, f\left(\bar{u}_{n}\right)\right\}$ is lin. dep.
then $\left\{\bar{u}_{i}, \ldots, \bar{u}_{n}\right\}$ is lin dep,
NTS: f is injective. $\Leftrightarrow \operatorname{ker} f=\{0\}$
$\bar{x} \in \operatorname{ker} f \quad f(\bar{x})=\overline{0}$
lin. $\operatorname{dep}\{\overline{0}\}=\{f(\bar{x})\} \Rightarrow\{\bar{x}\}$ is l.d.

$$
\bar{x}=\bar{o}
$$

2. f is surjective if and only if for each system of generators of $v\left\{\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{n}\right\}$, the set $\left\{f\left(\bar{u}_{1}\right), f\left(\bar{u}_{2}\right), \ldots, f\left(\bar{u}_{n}\right)\right\}$ is a system of generators of W.
3. f is bijective if and only if for each basis of $V\left\{\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{m}\right\}$, the set $\left\{f\left(\bar{u}_{c}\right), f\left(\bar{u}_{2}\right), \ldots, f\left(\bar{u}_{m}\right)\right\}$ is a basis of W.

Operations with linear mappings Given two linear mappings $f, g: V \rightarrow W$ and a scalar $\lambda \in \mathbb{R}$, we define the operations

$$
\begin{aligned}
& f+g: V \rightarrow w ;(f+g)(\bar{x})=f(\bar{x})+g(\bar{x}) \\
& \lambda f: V \rightarrow w ;(\lambda f)(\bar{x})=\lambda f(\bar{x})
\end{aligned}
$$

Theorem
With the operations defined above, the set of linear mappings between two vector spaces V and W is itself a rector space.

Moreover, the set of linear mappings between V and W has additional structure:

$$
\begin{aligned}
& T(\bar{x})=\bar{\sigma} \\
& T(\bar{u})=O \bar{x}
\end{aligned}
$$

Given two linear mappings $f: V \rightarrow W$ and $g: W \rightarrow u$, their composition $g \circ f: V \rightarrow u$ defined by $(g \circ f)(x)=g(f(x))$ is also a linear mapping.

Recall that if a function is bijective then it has an inverse function.
In particular, if $f: V \rightarrow W$ is a bijective linear mapping, then there exists a function $f^{-1}: W \rightarrow V$ such that

$$
\begin{array}{ll}
\forall \bar{v} \in V, & f^{-1}(f(\bar{v}))=\bar{v}=I d v \\
\forall \bar{w} \in W, & f\left(f^{-1}(\bar{w})\right)=\bar{w} .
\end{array}
$$

$I d_{w}$
Theorem
For each bijective linear function $f: V \rightarrow W$, its inverse mapping $f^{-1}: W \rightarrow V$ is also a linear mapping. That is,

$$
\begin{aligned}
f^{-1}(\alpha \bar{u}+\beta \bar{v})=\alpha f^{-1}(\bar{u})+\beta f^{-1}(\bar{v}), & \forall \bar{u}, \bar{v} \in W \\
& \forall \alpha, \beta \in \mathbb{R} .
\end{aligned}
$$

Linear mappings and matrices. In this section, we will see that linear mappings between finite-dimensional vector spaces have a matrix representation. The mechanism to achieve this matrix representation consists in using coordinates with respect to some basis of V and W.

More concretely, let $T: V \rightarrow W$ be a linear mapping, let B be a basis of V, and let C be a mapping of W. For any vector $\bar{x} \in V$, the image of \bar{x} under T is $T \bar{x} \in W$. The coordinates of \bar{x} and $T \bar{x}$ with respect to the corresponding bases are $[\bar{x}]_{s}$ and $[T \bar{x}] c$. We will see that there exists a matrix $M_{T}^{c, b}$ such that

$$
[T \bar{x}]_{C}=M_{T}^{C_{1} B}[\bar{x}]_{B} . \quad T(\bar{x})
$$

The matrix $M_{T}^{c, B}$ is the matrix representation of T when we fix the bases B and C. This matrix converts the coordinates $[\bar{x}]_{B}$ into the coordinates $[T \bar{x}]_{c}$.

The notation $M_{T}^{c_{1} t B}$ has been chosen to remark that the matrix represention of T depends of the bases B and C. In other words, it changes with the choice of bases.

Matrix associated to a linear mapping. In this section, we will construct the matrix associated to the linear mapping $T: V \rightarrow W$.

We start by fixing a basis for V and W. Let B be a basis for V and let C be a basis for W. In particular, let

$$
B=\left\{\bar{b}_{1}, \bar{b}_{2}, \ldots, \bar{b}_{n}\right\} .
$$

Then we can represent every $\bar{x} \in V$ as a linear combination of \mathcal{B} using the coordinates $[\bar{x}]_{B}$. That is,

$$
\bar{x}=x_{1} \bar{b}_{1}+x_{2} \bar{b}_{2}+x_{3} \bar{b}_{3}+\cdots+x_{n} \bar{b}_{n} ;[\bar{x}]_{B}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \text {. }
$$

Now, using the linearity of T, we have,

$$
\begin{aligned}
T \bar{x} & =T\left(x_{1} \bar{b}_{1}+x_{2} \bar{b}_{2}+x_{3} \bar{b}_{3}+\cdots+x_{n} \bar{b}_{n}\right) \\
& =x_{1} T\left(\bar{b}_{1}\right)+x_{2} T\left(\bar{b}_{2}\right)+x_{3} T\left(\bar{b}_{3}\right)+\cdots+x_{n} T\left(\bar{b}_{n}\right) .
\end{aligned}
$$

Since $T_{\bar{x}}$ is a vector of W, we can take the coordinates of $T_{\bar{x}}$ with respect to the basis C.

Therefore,

$$
[T \bar{x}]_{c}=x_{1}\left[T\left(\bar{b}_{1}\right)\right]_{c}+x_{2}\left[T\left(\bar{b}_{2}\right)\right]_{c}+\cdots+x_{n}\left[T\left(\bar{b}_{n}\right)\right]_{c}
$$

This last equation can be written as a matrix equation:

$$
[T \bar{x}]_{c}=\left(\left[T\left(\bar{b}_{a}\right)\right]_{c}\left[T\left(\bar{b}_{z}\right)\right]_{c} \ldots\left[T\left(\bar{b}_{n}\right)\right]_{c}\right)[\bar{x}]_{B}
$$

Comparing with the equation $[T \bar{x}]_{C}=M_{T}^{c_{1}^{t}}[\bar{x}]_{B}$ at the beginning of the section, we see that $M_{T}^{c_{1}+3}=\left(\left[T\left(\bar{b}_{1}\right)\right]_{c}\left[T\left(\bar{b}_{2}\right)\right]_{c} \ldots\left[T\left(\bar{b}_{n}\right)\right]_{c}\right)$.

Matrix equation of a linear mapping
Let V and W be two vector spaces of dimensions n and m, respectively, and let B and C be bases of V and W, respectively. Given a linear mapping $T: V \rightarrow W$, the matrix equation of T with respect to B and C is

$$
[\bar{y}]_{C}=[T \bar{x}]_{C}=M_{T}^{c, b}[\bar{x}]_{B} \Leftrightarrow \widetilde{T(\bar{x})=\bar{y}}
$$

which, given the coordinates $[\bar{x}]_{s}$ of a vector $\bar{x} \in V$ with respect to B, computes the coordinates $[T \bar{x}]_{c}$ of its image $T_{\bar{x}}$ with respect to C.
$M_{T}{ }^{9}$ is the matrix associated to T with respect to \mathcal{B} and C_{1} that is: the matrix of size $m \times n$ given by $M_{T}^{c, B}=\left(\left[T\left(\bar{b}_{1}\right)\right]_{c}\left[T\left(\bar{b}_{2}\right)\right]_{c} \cdots\left[T\left(\bar{b}_{n}\right)\right]_{c}\right)$.

The notation $M_{T}^{<, \beta}$ has been chosen so that, in the equation $\left[T_{\bar{x}}\right]_{C}=M_{T}^{c_{s}, b}[\bar{x}]_{B}$, everything indexed with B is collected on the right, and everything indexed with C is collected on the left.

$$
\begin{aligned}
& T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
\end{aligned}
$$

A special case is when $V=W$. Nevertheless, B and C may not be the same bases.
So a second special case when $V=W$ and $B=C$.

Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear mapping such that

$$
f\binom{1}{0}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \quad f\binom{0}{1}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) .
$$

We would like to write the matrix associated to f with respect to ε_{2} and ε_{3}, the canonical bases of \mathbb{R}^{2} and \mathbb{R}^{3}, respectively. condoning 6 Domain

$$
M_{f}^{\varepsilon_{3_{1}} \varepsilon_{2}}=\left(\left[f\binom{1}{0}\right]_{\varepsilon_{3}}\left[f\binom{0}{1}\right]_{\varepsilon_{3}}\right)
$$

$$
\begin{aligned}
& =\left(\left[\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\right]_{\varepsilon_{3}}\left[\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)\right]_{\varepsilon_{3}}\right) \\
& =\left(\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 0
\end{array}\right)
\end{aligned}
$$

只

Example. Let $D: \mathbb{P}_{3} \rightarrow \mathbb{T}_{3}$ be the linear mapping defined by $D_{p}(x)=p^{\prime}(x)$. Consider the canonical basis $B=\left\{1, x_{1} x^{2}, x^{3}\right\}$. Write the matrix associated with D with respect to B (the second special case discussed above).

$$
\begin{aligned}
M_{D}^{B_{B B}^{C}} & =\left([D 1]_{B}[D x]_{B}\left[D x^{2}\right]_{B}\left[D x^{3}\right]_{B}\right) \\
& =\left([0]_{B}[1]_{B}[2 x]_{B}\left[3 x^{2}\right]_{B}\right) \\
& =\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
\bar{x}=1+3 x^{2} \quad & T \bar{x}=D\left(1+3 x^{2}\right)=6 x \\
& {[T x]_{B}=M_{D}^{B, B}[\bar{x}]_{B} }
\end{aligned}
$$

derivative of $\bar{x} \in \mathbb{P}_{3}$

$$
\begin{aligned}
& {\left[T_{\bar{x}}\right]_{B}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
3 \\
0
\end{array}\right)} \\
& {\left[T_{\bar{x}}\right]_{B}=\left(\begin{array}{l}
0 \\
6 \\
0 \\
0
\end{array}\right) \Rightarrow 6 x}
\end{aligned}
$$

Example. Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{4}$ be the linear mapping defined by $T p(x)=x p(x)$. Consider the bases $B=\left\{1,1+x, x+x^{2}, x^{2}+x^{3}\right\}$ and $C=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ of \mathbb{P}_{3} and \mathbb{P}_{4}, respectively.

Associated matrix: Injectivity and Surjectivity In this section, we will relate some properties of a linear mapping with some properties of its associated matrix.

Consider the linear mapping $T: V \rightarrow W$ between to finite-dimensional vector spaces. Since we can associate a matrix with T, we will use the tools developed for matrices to study the mapping T.

For this, we need to fix a basis for v : $B=\left\{\bar{b}_{1}, \bar{b}_{2}, \ldots, \bar{b}_{n}\right\}$.
We will also need to fix a basis for W : C.

With these two bases, we can construct $M_{T}^{C B}$, the matrix associated with T_{1} such that

$$
[T \bar{x}]_{C}=M_{T}^{c_{i} B}[\bar{x}]_{B}, \quad \forall \bar{x} \in V .
$$

Recall that the matrix $M_{T}^{c_{1} B}$ is given by:

$$
M_{T}^{c_{1} \beta}=\left(\left[T\left(\bar{b}_{1}\right)\right]_{c}\left[T\left(\bar{b}_{2}\right)\right]_{c} \ldots\left[T\left(\bar{b}_{n}\right)\right]_{c}\right)
$$

We have the following facts studied previously:

- Studying a set of vectors is equivalent to studying its coordinates.
- Since B is a linearly independent set, T is injective if and only if $\left\{T\left(\bar{b}_{1}\right), T\left(\bar{b}_{2}\right), \ldots, T\left(\bar{b}_{n}\right)\right\}$ is a linearly independent set.
- Since 13 is a generating system of V, T is surjective if and only if $\left\{T\left(\bar{b}_{1}\right), T\left(\bar{b}_{2}\right), \ldots, T\left(\bar{b}_{n}\right)\right\}$ is a generating system of W.

First, we will study the relationship between the injectivity of T and the pivot columns of $M_{T}^{C B}$. We know that T is injective if and only if $\left\{\left[T\left(\bar{b}_{1}\right)\right]_{c},\left[T\left(\bar{b}_{2}\right)\right]_{c} \ldots,\left[T\left(\bar{b}_{n}\right)\right]_{c}\right\}$ is linearly independent. But these vectors are the columns of $M_{T}^{c, s}$. Therefore, we have
T is injective if and only if the columns of $M_{T}^{C B}$ are linearly independent, equivalently, all the columns are pivots.

Tis injective if and only if $[\bar{b}]_{C}=M_{T}^{c_{1} B}[\bar{x}]_{B}$, $\bar{b} \in \operatorname{lm} T$, has a unique solution.
Clearly, the number of pivots in $M_{T}^{C_{1} B}$ is independent of the chosen bases B and C.

- We can relate the injectivity of $M_{T}^{c, 8}$ with the rank of $M_{T}^{c, B}$
rank $M_{T}^{c, B}=\#$ pivots $=\#$ columns of $M_{T}^{c, B}=\operatorname{dim} V$ by injectivity of T, all the columns are pivots.
Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear mapping such that

$$
f\binom{1}{0}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \quad f\binom{0}{1}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) .
$$

We have already found the associated matrix with respect to the canonical bases:

$$
M_{f}^{\varepsilon_{3} \varepsilon_{2}}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 0
\end{array}\right) \sim\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

We can see that all the columns of $M_{f}^{\varepsilon_{3}, \varepsilon_{2}}$ are pivots (equivalently, rank $M_{f}^{\varepsilon_{3}, \varepsilon_{2}}=\operatorname{dim} \mathbb{R}^{2}=2$), therefore f is injective.

Example. Let $D: \mathbb{P}_{3} \rightarrow \mathbb{P}_{3}$ be the linear mapping defined by $D_{p(x)}=p^{\prime}(x)$. As we have previously seen, the associated matrix with respect to the standard basis B is

$$
M_{D}^{B, 1 B}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This matrix only has 3 pivots and one nonpivot column. Therefore D is not injective.
Equivalently, D is not injective because

$$
\operatorname{rank} M_{D}^{B, B}=3 \neq \operatorname{dim} \mathbb{T}_{3}=4
$$

Example. Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{4}$ be the linear mapping defined by $T p(x)=x p(x)$. Consider the bases $B=\left\{1,1+x, x+x^{2}, x^{2}+x^{3}\right\}$ and $C=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ of \mathbb{P}_{3} and \mathbb{P}_{4}, respectively.
The associated matrix is

$$
M_{T}^{c, B}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

In this case, every column of $M_{T}^{c_{1} B}$ is a pivot, and therefore T is injective. Equivalently, T is infective because

$$
\operatorname{rank} M_{T}^{c_{1} \beta}=4=\operatorname{dim} \mathbb{P}_{3}
$$

Now, we will study the relationship between the surjectivity of T and the pivots of $M_{T}^{c, s}$. We know that T is surjective if and only if $\left\{\left[T\left(\bar{b}_{1}\right)\right]_{c},\left[T\left(\bar{b}_{2}\right)\right]_{c}, \ldots,\left[T\left(\bar{b}_{n}\right)\right]_{c}\right\}$ is a system of generators of \mathbb{R}^{m}, where $m=\operatorname{dim} W$. In other words, the matrix equation

$$
[\bar{b}]_{c}=M_{T}^{c, B}[\bar{x}]_{B}, \quad \bar{b} \in W
$$

should always have a solution for any $\bar{b} \in W$. For this to be true, each row of $M_{T}^{c, 1}$ must have a pivot in order to avoid contradictions of the form $0=1$.
T is surjective if and only if the columns of $M_{T}^{c, s}$ constitutes a system of generators of $\mathbb{R}^{m}, m=\operatorname{dim} W$, equivalently, each row of $M_{T}^{C, B}$ has a pivot.
T is surjective if and only if the equation $[\bar{b}]_{c}=M_{T}^{c, B}[\bar{x}]_{B}$ always has a solution for any $\bar{b} \in W$.
We can relate the surjectivity of T with the rank of $M_{T}^{c, s}$

$$
\operatorname{rank} M_{T}^{G B B}=\# \text { pivots }=\# \text { rows of } M_{T}^{G B}=\operatorname{dim} W \text {. }
$$

by the surjectivity
of T, each row has a pivot.

Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear mapping such that

$$
f\binom{1}{0}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \quad f\binom{0}{1}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) .
$$

We have already found the associated matrix with respect to the canonical bases:

$$
M_{f}^{\varepsilon_{3}, \varepsilon_{2}}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 0
\end{array}\right) \sim\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

We can see that not every row of $M_{T}^{\varepsilon_{3} \varepsilon_{2}}$ has a pivot, therefore f is not surjective. Equivalently, f is not surjective because

$$
\operatorname{rank} M_{f}^{\varepsilon_{3_{1}} \varepsilon_{2}}=2 \neq \operatorname{dim} \mathbb{R}^{3}=3
$$

Example. Consider the linear mapping $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ defined by $T(\bar{x})=A \bar{x}$ where

$$
A=\left(\begin{array}{ccccc}
1 & 4 & 7 & 5 & 11 \\
2 & 5 & 8 & 7 & 13 \\
3 & 6 & 10 & 9 & 16
\end{array}\right) .
$$

Clearly, the matrix associated to T with respect to the canonical bases is A.

$$
A \sim\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Since every row of A has a pivot, we have that T is surjective. Equivalently, T is surjective since

$$
\operatorname{rank} A=3=\operatorname{dim} \mathbb{R}^{3}
$$

To finish this section, it must be remarked that T is bijective if and only if every row and every column of $M_{T}^{c_{j} B}$ has a pivot. For this, it is necessary that $M_{T}^{c^{\prime}}$ is square and invertible.
Moreover, a mapping can be both not infective and not surjective. An example of this is the mapping $D: \mathbb{P}_{3} \rightarrow \mathbb{P}_{3}$ defined by $D p(x)=p^{\prime}(x)$.

Associated matrix and change of bases.

Let V and W be two vector spaces, and let $T: V \rightarrow W$ be a fixed, but arbitrary, linear mapping.

Recall that the matrix associated with T depends on the bases chosen for V and W. Nevertheless, the linear mapping should not depend on our choice of bases.
This implies that there is a relation between two matrices associated with T but with respect to distinct bases.

Indeed, these relations exist and constitute the center of attention of this section.

Recall that V and W are vector spaces and the linear mapping $T: V \longrightarrow W$ is fixed but arbitrary.

Let's choose two distinct bases for $V: B$ and \widetilde{B}, and two distinct bases for $W: C$ and $\tilde{\mathcal{C}}$.
Then, we have the following relations between coordinates:

$$
\begin{aligned}
& {[\bar{v}]_{B}=\underset{B \in \tilde{B}}{P}[\bar{V}]_{\tilde{B}}, \quad \bar{v} \in V} \\
& {[\bar{W}]_{c}=\underset{c \in \tilde{B}}{P}[\bar{W}] \tilde{c}, \quad \bar{W} \in W,}
\end{aligned}
$$

Where $\underset{B}{P} \leftarrow \tilde{B}$ and $P_{C}^{P} \tilde{C}$ are the corresponding matrices of change of bases.

Recall that $M_{T}^{c, B}$ denotes the matrix associated with T with respect to B and C, and $M_{T}^{\tilde{c}, \tilde{B}}$ denotes the matrix associated with T with respect to \tilde{B} and \tilde{C}.

We can conveniently summarize the relation between these matrices with the following diagram

$$
\begin{aligned}
& W \stackrel{T}{\longleftarrow} \mathrm{~V} \\
& {[\bar{w}]_{c}=M_{T}^{c, B} \quad[\bar{v}]_{B}}
\end{aligned}
$$

$$
\begin{aligned}
& {[\bar{W}]_{\tilde{c}}=M_{T}^{\tilde{c}, \tilde{B}}[\bar{v}]_{\tilde{B}}}
\end{aligned}
$$

Our goal is to find a relation between $M_{T}^{c, B}$ and $M_{T}^{\tau, B}$. T_{0} do this, we proceed as follow:
Consider the matrix equation associated with T with respect to the bases B and C :

$$
[T \bar{v}]_{C}=M_{T}^{C, B}[\bar{v}]_{B}, \quad \forall \bar{v} \in V .
$$

Note that $[T \bar{v}]_{c}={ }_{c} \stackrel{P}{\leftarrow} \tilde{c}[T \bar{v}]_{\tilde{c}}$ an $[\bar{v}]_{B}=\bar{B} \in \bar{B}[\bar{v}]$. Substituting these relations in the above equation, we obtain

$$
{\underset{C \leftarrow \widetilde{C}}{ }[T \bar{V}]_{\tilde{C}}=M_{T}^{C, B} P_{B \leftarrow \tilde{B}}[\bar{V}]_{\tilde{B}} .}^{P^{C}}
$$

Lastly, multiplying both sides of this equation by $\underset{c \in \tilde{c}}{P^{-1}}=\underset{\tilde{c} \leftarrow c}{P}$, we obtain

$$
[T \bar{v}]_{\tilde{c}}=\underset{\tilde{c} \leqslant c}{P} M_{T}^{c, B} \underset{B \in \tilde{B}}{P}[\bar{v}]_{\tilde{B}} .
$$

Comparing this last equation with $\left[T_{V}\right]_{\tilde{C}}=M_{T} \tilde{c}_{T}[\bar{V}]_{\tilde{B}}$, we deduce

$$
M_{T}^{\tilde{C} \tilde{B}}=\underset{\tilde{C} \leftarrow C}{P} M_{T}^{C, B} P_{B \in \tilde{B}}^{P}
$$

Change of bases formula for the matrix associated with a linear mapping T.

This formula is the relation between $M_{T}^{c, s}$ and $M_{T}^{\bar{c}, \bar{B}}$ that we were looking for.

Observe how the notation can help us remember the formula above as follows:

On the left hand side of the formula we have $M_{T}^{\tilde{c} \tilde{B}}$ with superindeces \tilde{C} and \tilde{B}. On the right hand side, these same indices are on the exterior, while B and C appear on the interior. Moreover, notice that the subindex B y below the superindex C, and similarly, the subindex C y below the superindex C.

We can also use the diagram

$$
\begin{aligned}
& W \stackrel{T}{\longleftarrow} V \\
& {[\bar{w}]_{c}=M_{T}^{c, B} \quad[\bar{v}]_{B}}
\end{aligned}
$$

$$
\begin{aligned}
& {[\bar{W}]_{\tilde{c}}=M_{T}^{\tilde{c} \tilde{B}}[\bar{v}]_{\tilde{B}}}
\end{aligned}
$$

to remember how to write the change of bases formula. Notice that the arrow connecting directly \tilde{B} and \widetilde{C} is labeled $M_{T}^{\tilde{c}, \tilde{B}}$. Also notice that \tilde{B} and \tilde{C} can be connected alternatively via: $\tilde{B} \longrightarrow B \rightarrow C \rightarrow \tilde{C}$.
Writing (from right to left) the labels of this alternative path we get $P_{i<c}^{P} M_{T}^{G B} P_{B \in B}$. Since the direct path and the alternative path connect the same two vertices \tilde{B} and \vec{C} we will say that they are equal: $M_{T}^{\tilde{c}, \sqrt{B}}=P_{\tilde{c} \leftarrow C} M_{T}^{c, B} P_{B \in \vec{B}}$, obtaining the desired change of bases formula.

Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear mapping such that

$$
f\binom{1}{0}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \quad f\binom{0}{1}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)
$$

We have already found the associated matrix with respect to the canonical bases:

$$
M_{f}^{\varepsilon_{3}, \varepsilon_{2}}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 0
\end{array}\right)
$$

Now consider the following bases for \mathbb{R}^{2} and \mathbb{R}^{3} :

$$
B=\left\{\binom{1}{0},\binom{1}{1}\right\}, C=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}
$$

We will compute the matrix associated with f with respect to B and C.

Example. Consider the linear mapping $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ defined by $T(\bar{x})=A \bar{x}$ where

$$
A=\left(\begin{array}{ccccc}
1 & 4 & 7 & 5 & 11 \\
2 & 5 & 8 & 7 & 13 \\
3 & 6 & 10 & 9 & 16
\end{array}\right) .
$$

Clearly, the matrix associated to T with respect to the canonical bases ε_{5} and ε_{3} is $M_{T}^{\varepsilon_{3} \varepsilon_{5}}=A$. Consider the bases of \mathbb{R}^{5} and \mathbb{R}^{3}

$$
B=\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
-1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
-1 \\
-1 \\
0 \\
1
\end{array}\right)\right\}
$$

$$
C=\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right),\left(\begin{array}{l}
7 \\
8 \\
10
\end{array}\right)\right\}
$$

The matrix associated with T with respect to B and C is given by

